

PIER -Environmental Area

Avian Research ProgramWind Turbine Issues

Linda Spiegel June 28, 2005

PIER Goals and Objectives

- Provide a clean, reliable, affordable, and resilient supply of electricity to California
- Evaluate and resolve environmental impacts from electricity generation, transmission, and use
- Improving the environment, health, and safety
- Providing greater choices for California consumers

PIER-EA Program Areas

- Global ClimateChange
- Aquatic Resources
- Indoor/Outdoor Air Quality
- Land Use and Habitat

Problem Statement

- California's economy is dependent on reliable and stable electricity supplies which requires adequate transmission systems and a mix of energy production sources.
- Avian collision and electrocution with generation and transmission systems are killing birds, stopping production of new generation, causing outages, and are increasingly becoming a concern to law enforcement, the public, and siting.

Energy Commission Studying Avian-Wind Issue Since 1989

- **CEC 1989-** Identified as problem
- **CEC 1992, 1996-** 1st in-depth studies, extent of problem, determined some species at greater risk
- 90's Industry sponsored studies, bankruptcy, no results
- **CEC 1997-** Tehachapi/San Gorgonio; risk factor similar, fewer birds, fewer collisions
- NWCC 1999 Guidelines for determining risk. Avoidance
- NREL 1994-97, GE fatality at Altamont, population declining rapidly
- **CEC 1998** more logical model, population stable, but threatened.
- NREL 1998-01 determine numbers and identify risk factors
- **CEC 2001-03** design quantitative risk model

Meeting Goals to Evaluate and Resolve Problems

- Renewable Portfolio Standard
 - Wind Energy Important to Meet Goal
- 1998 Moratorium at APWRA
 - Cannot increase current capacity of 580 MW until demonstrable progress toward significantly reducing bird mortality

APWRA- Important Source of Research Powers the Future Renewable Energy and Bird Use Area

- Provides ~ 30% of state's 3.5 billion kWhrs of energy
- Repowering potential
- High number of turbines ~ 5,400
- Variety of turbine types
- Complex terrain
- High bird use
 - Largest known GE nesting site in country
 - Winter Migratory Bird Use
 - Potentially Highest Known Burrowing Owl Density in CA

PIER-EA Research

Developing Methods to Reduce Bird Mortality in the Altamont Pass Wind Resource Area

> August 04 P500-04-052

4-year research project at APWRA aimed to better understand and reduce high bird mortality

Study Objectives

- Identify fatality associations to turbine types & distribution, landscape, range management
- Relate bird behaviors to fatality
- Develop predictive models to determine collision risk based on causal factors underlying observed fatalities
- Develop mitigation measures
- Resolve bird mortality issue and support renewable development

Results Based on Robust Number of Data Points

Behavioral Studies

- 2,209 Sessions
- 48,993 Sighting
- 35,201 minutes bird activity
- 29, 844 minutes raptor activity

Fatality Searches

- 1,526 turbines May 98 Sept 02
- − 2,548 turbines Nov 02 − May 03

3 Years of Monitoring Necessary to Yield Reliable Results

Annual Fatality Estimates Are Significant

- **75 116 Golden Eagles**
- **209-300 Red-tailed Hawks**
- 15 24 Ferruginous Hawks
- 73 333 American Kestrels
- 99-380 Burrowing Owls
- **8- 10 Great Horned Owls**
- **36-49 Barn Owls**
- **881 1,300 raptors**

- 9 23 California Gulls
- **59 154 Mallards**
- **116 704 Mourning Doves**
- **309 -2,557 Meadowlarks**
- 18 49 Common Ravens
- **23 115 Horned Larks**
- **23 176 Loggerhead Shrikes**
- 1,767 4,721 birds

Fatalities by Season

Proximity Zone Based on Distance to Nearest Turbine (m)

Repowering with Larger Turbines May Reduce Fatalities at APWRA

- Placing turbine blades high above ground may reduce incidence of collision
- Site Specific Solution
- Bird Behavior Data is Key

Source: Developing Methods to Reduce Bird Mortality.

Accountable Mortality = (Observed – Expected) ÷ Total fatalities × 100%

Variable	Magnitude of increase in Golden Eagle		
Height of lowest blade reach	mostalithrbines with lower reaches of blades		
Whether in wind wall	+ 12% at turbines <i>not</i> in wind walls		
Position in turbine string	+ 17% at the string end, 2% next to gaps		
Location in wind farm	+ 12% at local cluster of turbines		
Wind turbine congestion	+ 21% at turbines more sparsely distributed		
Physical relief	+ 21% on ridgeline		
Whether in canyon	+ 13% in canyon		
Slope grade	+ 13% on steeper slopes		
Edge index	+ 27% at sites with greater vertical edge		
Rodent control	+ 14% in areas with no control		
Cattle pats at wind turbines	+ 19% at turbines with more cattle pats		

Predicted Impact = Σ accountable mortality

Some Significant Findings

- Raptors flying closer to turbines much more than expected, flying farther away from turbines much less than expected—land management attracting birds.
- Winter has highest fatality for most species
- Turbines in canyons, at the end of strings, or isolated have highest kills
- Most flights (73%) occur at blade zone of existing turbines Most flights occur at windward side of slopes
- Blades placed 29m or higher above ground will avoid 84% of observed flights

Rodent Control not without Controversy

Some Recommended Mitigation

- Repower with tall towers that place turbine blades high above ground place on leeward side of slopes
- Relocate or seasonally shut down selected, highly dangerous turbines
- Select low risk locations
- Cluster turbines to reduce gaps
- Monitor
- Off-site compensation
- Land management implement practices that attract prey away from turbines

Working Together to Resolve Problem

- APWRA operators
- Appellants
- Alameda County
- Commission Staff
- Sierra Club
- Land Owners

Industry Requested Model Outputs to ID High Risk Turbines

Tiers in Tiers in Group B	Tiers in	iers in Tiers in	No. of turbines	In Group C	
	Group C		No. of turbines	MW of capacity	
1	1	1	54	54	5.01
1	2	2	64	101	9.02
2	1	2	37		
2	2	3	152	152	15.23
2	3	4	31	297	27.60
3	2	4	61		
3	1	4	12		
3	3	4	149		
1	3	4	43		
1	4	5	42	1323	125.71
2	4	5	116		
3	4	5	151		
4	4	5	788		
4	1	5	3		
4	2	5	12		
4	3	5	211		
5*	1*	6	2133	2133	254.00
		Total		4059	436.58

Helping Identify Highest Risk Turbines

Studies to Determine Effectiveness of Recommended Measures

- Working with operators to develop scientifically robust study design to research effect of seasonal/permanent shutdown
- Working with other land owners to develop study design to research effect of land management practices

Proactive Approach to Future Wind Farm Locations

- Screen potential wind sites for their likely impact to birds
- Intended for decision-makers and the public
 - Consider the costs and benefits of wind development statewide
 - Prioritize where to site wind development
- Step-By-Step Approach:
 - Step 1: Score Vulnerability
 - » Habitat suitability, geographic range
 - Step 2: Determine Status
 - » listing by state and federal agencies.
 - Step 3: Score Susceptibility
 - » Natural history literature, experts, wind farms.
 - Step 4: Identify Potential Project Sites
 - » characterize by habitat, top ographic features, and relative elevation.
 - Step 5 : Enter numbers into spreadsheet
 =>Impact Indicator scores.

Golden Eagle Study Adjusted Earlier Estimates of Rapidly Declining Population

- 100 deaths over 7-yr period (~ 40-60/year)
- 42% turbine caused (12% electrocution)
- mostly subadults and floaters (future breeders)
- floaters buffers breeding pop
- Adults nesting outside WRA stay in territories
- Found population +/- stable, no annual rate of change in productivity, but no production of floaters
- Any further decrease in survival or reproduction would only be mitigated by immigration of floaters

Publication: Hunt July 2002 P500-02-043F

Follow Up Studies as Recommended

3-year review of golden eagle nest occupancy trend in the vicinity of APWR

Bats are a New Challenge to Wind Developments

Develop Cost Effective Collision Monitors

Feasibility Study:
investigate contact and
non-contact sensor
technologies to record
bird and bat strikes

Potential Technologies

Accelerometers
Fiber Optic Sensors
Acoustic Emission Sensors
Machine vision sensors
Laser vibrometers

Phase II – prototype testing

Always a Challenge -

Thank you!

Linda Spiegel

Lspiegel@energy.state.ca.us

(916) 654 4703